

Types of dates

No uncertainties

Yearly resolution

Decadal / centennial – (multi-) millennial resolution

Dates without uncertainties

Historical information

Dendro-dated trees

Tephra

- But, identified with 100% confidence?
 - Geochemistry, stratigraphy
- Depth known exactly?

Payne & Gehrels, 2010. The formation of tephra layers in peatlands: An experimental approach. *Catena* 81:12-23

Dates with annual uncertainties

Layer counting of deposits (ice, varved lakes)

²¹⁰Pb, post-bomb ¹⁴C

Annually layered ice cores

ECM

[NO₃] (ppbw)

(wqdd) [^{*}₄HN]

The Greenland Ice Core Chronology 2005, 15–42 ka. Part 1, Part 2. Quaternary Science Reviews 25

Decadal-millennial uncertainties

OSL, U/Th

Preparation

- Contamination problems
- Measurement uncertainties
- Age offsets (spatiotemporal variation)
- Need for calibration

Bull's Eye- Precise and Accurate

Precise but inaccurate

Accurate (on average) but imprecise

Carbon dating

¹⁴C dating

¹⁴C unstable, half-life 5568 yr
Ratio ¹⁴C/C gives age fossil

- Atm. ¹²C (99%), ¹³C (1%), ¹⁴C (10⁻¹²)
- ¹⁴C decays exponentially with time
- Measure ratio ¹⁴C/C to estimate age fossil

Dating uncertainties

¹⁴C dating

An alternative to the normal model

- Christen and Perez 2009, Radiocarbon
- Spread of dates often beyond expected
- Reported errors are estimates
- Propose an error multiplier, gamma
- No more need for outlier modelling?

Tree-ring coverage for IntCal04: until 12.4 kcal BP

Tree-ring coverage for IntCal04

Tree-ring coverage for IntCal09

Reimer et al., 2009. IntCal09 and marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51

Reimer et al., 2009. IntCal09 and marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51

http:///www.chrono.qub.ac.uk/blaauw/

¹⁴C calibration

¹⁴C dating

Calibrate - methods

- Probability preferred over intercept
 - Less sensible to small changes in mean
 - Resulting cal.ranges make more sense
- Procedure probability method:
 - What is prob. of cal.year x, given the date?
 - Calculate this prob. for all cal.ages
- Combine errors date and cal.curve $\sqrt{(\sigma^2 + sd^2)}$

Calibrate - methods

- Multimodal distributions
 - Which of the peaks most likely (Calib %)?
 - How report date?
 - 1 or 2 sd
 - sd range
 - mean±sd
 - mode
 - weighted mean (Telford et al. '05 Holocene)
 - why not plot the entire distribution!

Calibrate - DIY

- Using eyes/hands on handout paper
 - Imagine invisible arbitrary second axes for probs
 - Don't use intercept
 - Try "cosmic schwung", not mm precision
 - Don't go from C14 to calBP! What is prob x cal BP?
 - Calibrated ranges?