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Paleoecology

Figure: Sampling from a peat core, recent goelogical past (less than 40,000
years to the present). Samples are collected at several depths and some
samples are radiocarbon dated.
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Chronology
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Figure: Chronology for the MSB2K peat profile, sampled from a peat bog in
Meerstalblok, Neatherlands. 40 radiocarbon datings; the posterior depth-age
relationship is obtained using a self adjusted MCMC.
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Radiocarbon dating, Bayesian chronology and MCMC

We have a set of radiocarbon datings y; £ oj;j = 1,2,..., m, of
samples taken along the peat core, at depths d.

We use a semiparametric model, to establish the (unknown)
relationship between depth d and age G of the profile

i
G(d.0,x) =0+ xAC+ X1(d — G);
j=1

where ¢; < d < ¢j11,i < K,and ¢y < ¢1 < --- < ¢k are depths
uniformaly spaced along the core every Ac cm and
X =(X1,X2,...,XK)-
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Radiocarbon dating, Bayesian chronology and MCMC

That is, the core profile is divided into K equidistant sections and x; is
the peat accumulation rate (yr/cm) in section j.

Every radiocarbon determination has an asociated standard
(measuring) error o;. We use a new robust t model (fallowing Christen
and Pérez E., 2009), with E[y; | d;, x] = u(G(d}, 0, x)) where p is the
Internationally Agreed Radiocarbon Calibration Curve, INTCALQ9, that
relates (calibrates) calendar years to radiocarbon ages.

We perform a MCMC analysis (the prior information on the
accumulation rates is very important) to obtain our posterior
distributions. We use a robust and self adjusting MCMC sampler: the
t-walk (Christen and Fox, 2010).
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Where to date? Costs?

But, how should we decide on the depths where it is wise to
radiocarbon date and how many dates should we consider?

Considering the fact that each radiocarbon dating will cost around

€500 each.
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Brute force (formal) approach

Christen and Buck (1998) present a brute force design approach, in a
similar radiocarbon dating problem:

@ We define an Utility Function U, measuring the relative gain of
radiocarbon dates against their cost and start with a (trial) set of
already dated samples y .
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radiocarbon dates against their cost and start with a (trial) set of
already dated samples y .
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samples available A.

© Using our MCMC we simulate, from the predictive distribution of
samples in M, a set of radiocarbon results. For each of these
simulated samples, a second MCMC is used to recalculate the
chronology.
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Brute force (formal) approach

Christen and Buck (1998) present a brute force design approach, in a
similar radiocarbon dating problem:

@ We define an Utility Function U, measuring the relative gain of
radiocarbon dates against their cost and start with a (trial) set of
already dated samples y .

@ We select a test set M (a candidate design) from the set of all
samples available A.

© Using our MCMC we simulate, from the predictive distribution of
samples in M, a set of radiocarbon results. For each of these
simulated samples, a second MCMC is used to recalculate the
chronology.

© The corresponding utility is evaluated each run, and over many
sampled data, the corresponding expected utility of the trail set,
U*(M), may be approximated.

@ The same is repeated for all possible designs (all M c A) to obtain
an optimal design M*.
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Brute force (formal) approach

As may be seen, Christen and Buck (1998) is the standard Bayesian
design solution (maximize posterior predictive expected utility over all
possible designs), but in a MCMC setting is simply too computationally
demanding and unfeasible to run in many cases.
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An heuristic alternative: Active Learning

Christen and Sansé (2010) propose an index to sequentially select
sample design points in the context of Gaussian Processes (for the
statistical analysis of computer experiments).
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The index A

Christen and Sansé (2010) propose an index based on an
apprximation to the Active Learning ideas of Cohon, that propose to
select a design point that contributes the most to the reduction in
variance of the fitted model.

Christen and Sans6 (2010) index is
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The index A

Christen and Sansé (2010) propose an index based on an
apprximation to the Active Learning ideas of Cohon, that propose to
select a design point that contributes the most to the reduction in
variance of the fitted model.

Christen and Sans6 (2010) index is

Ald 71_||r(dN+1)Hl a d.d 2 1
( N+1‘yN)_ C? mzc( s N+1) ( )

j=1
where ||r(dy1)I12 = S84 c(dhsr, di)2, C = maxi12,..m V(d), c(-,-)
is the covariance and V(d) = ¢(d, d), the variance, at depth d. Using
a renormalization such that min;_1 o, V(d;) = 1.
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The index A

Our index may be rewritten as

1—||r(d 1
Irdhe) 1 ( P S olddenn )

J#ENA+1

@ Our index prefers points (depths) with high variance (high
variance in the fitted chronology),
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The index A

Our index may be rewritten as

1‘”%‘;’“””1 (V(dN+1)2+ > C(djadN—H)Z)'

j#N+1

@ Our index prefers points (depths) with high variance (high
variance in the fitted chronology),
@ but also design points that are correlated with other points

(potentially, we may obtain information about those points by
sampling at one location only).
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The index A

Our index may be rewritten as

1‘”%‘;’“””1 (V(dN+1)2+ > C(djadN—H)Z)'

j#N+1

@ Our index prefers points (depths) with high variance (high
variance in the fitted chronology),

@ but also design points that are correlated with other points
(potentially, we may obtain information about those points by
sampling at one location only).

@ Moreover, our index prefers points far (not correlated) with already
sample points, given the factor ||r(dns1)|l-
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Sequential sampling procedure for chronology building

@ Given a trial of already radiocarbon dated samples y,, we have

our MCMC simulation for 98”, xO w) t =12 ... Tandforeach
simulation t we are able to calculate
G, 00, x10), G(ea, 0, x), ..., G(er, 0§, X1).
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Sequential sampling procedure for chronology building

@ Given a trial of already radiocarbon dated samples y,, we have

our MCMC simulation for 98”, xO w) t =12 ... Tandforeach
simulation t we are able to calculate
G(c1, 687, x9), G(cz, 67, xD), ..., G(ck, 687, xD).

@ We may then calculated (estimate) the covariance of any pair of
depths, for our fitted chronology, ¢(d;, d;).
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Aindex is the next sample considered for dating.

© Send the sample at depth d* for a radiocarbon analysis and
wait for the result. Alternatively, depending on logistics etc., we
may impute a new date at depth d* with, for example

-
1 k
YN+1 = 72 G(a*, 65, xD).
=1
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Example with the MSB2K core, using our index A
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Example with the MSB2K core, using our index A

DeMSB2K

Figure: We take a trail sample
of 3 radiocarbon dates only.
Black dots: index A plotted in
arbitraty scale.
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Example with the MSB2K core, using our index A

@ We concentrate on the
high density sampled
section of 0 to 80 cm
depth
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Figure: We take a trail sample
of 3 radiocarbon dates only.
Black dots: index A plotted in
arbitraty scale.

JA Christen (CIMAT) Design in Paleo Chronologies



Example with the MSB2K core, using our index A

@ We concentrate on the
high density sampled
section of 0 to 80 cm

. depth

35 @ We calculate the index A

- for every possible depth

. P % o to be radiocarbon dated.

Figure: We take a trail sample
of 3 radiocarbon dates only.
Black dots: index A plotted in
arbitraty scale.

JA Christen (CIMAT) Design in Paleo Chronologies



Example with the MSB2K core, using our index A

@ We concentrate on the
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Example with the MSB2K core, using our index A

DeMSB2K

Figure: We take a trail sample
of 3 radiocarbon dates only.
Black dots: index A plotted in

arbitraty scale.
JA Christen (CIMAT)

@ We concentrate on the
high density sampled
section of 0 to 80 cm
depth

@ We calculate the index A
for every possible depth
to be radiocarbon dated.

@ We plot the index A. The
red dot is the maximum.

@ We radiocarbon date at
the selected point,
recalculate the
chronology and start
again.
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Averange variance along the core
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Figure: Average variance for our chronology with increasing number of
samples.
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Discusion

@ The use of our index A in this context seems like a good, feasible,
alternative to the a formal and complex procedure.
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Discusion

@ The use of our index A in this context seems like a good, feasible,
alternative to the a formal and complex procedure.

© It is however, not clear weather radiocarbon labs will be able to
date samples sequentially, or could paleoecologists will be willing
to wait for the results. We need also to consider sampling in
batches, and experiment with imputing dates for candidate
samples.

JA Christen (CIMAT) Design in Paleo Chronologies



Discusion

@ The use of our index A in this context seems like a good, feasible,
alternative to the a formal and complex procedure.

© It is however, not clear weather radiocarbon labs will be able to
date samples sequentially, or could paleoecologists will be willing
to wait for the results. We need also to consider sampling in
batches, and experiment with imputing dates for candidate
samples.

© A stopping rule is also needed, to balance out the added gain in
chronology precision with the cost of sampling.
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